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Eloquent: recap



• Eloquent = ORM (Object-Relational Mapper)

• Database tables have corresponding models, used to interact with tables

• We do not write SQL code ourselves, but let Eloquent generate it for us

• Convention over configuration:

• Table names are plural, corresponding Models singular

• Each table has a PK field called id of type INTEGER AUTO_INCREMENT

• One-to-many relationships are handled in the database by taking singular of table 
and suffixing foreign key field with _id

• These are conventions: we do not need to explain Laravel the pluralization rules 
or primary keys

• As long as we follow the rules, Eloquent knows what to do
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Eloquent: recap
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Database table names are pluralized
Primary keys are auto increment integers called id
For 1 to many relationships, the foreign key name consists of the related table name in singular, suffixed by _id
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Eloquent: recap
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• Selecting all records
using all():

• Adding a specific record
using save():



Eloquent: additional use cases
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Eloquent use cases
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• Using the find() method, select a record based on its primary key

• Using the save() method, you can also update existing records:

• Using the delete() method, you can delete an existing record:



Validation
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Validation
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• Validate form input on server-side

• Do not depend on client-side validation only!

• Define rules per parameter

• Rules are combined using the | symbol

• When validation fails, user gets returned to originating view

• $errors variable can be used to display validation errors
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Validation
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Individual rules per parameter
See https://laravel.com/docs/master/validation

Keys must match name attributes of your form fields

https://laravel.com/docs/master/validation
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Validation
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validate() method returns 
an associative array,
containing all validated
values
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Validation
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• In Blade file:

Only if there are errors…

…loop over them and print
them out



Cookies
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HTTP = stateless protocol

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• When submitting a form, all previous data is lost

• (Except if we store in database)

• Reason: HTTP is a stateless protocol

• Each request is independent from the subsequent one
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HTTP = stateless protocol
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• Somehow, we must make sure our webserver code “remembers” us

• Solutions have been developed:

• Cookies

• Sessions
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Cookie
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• Small text file

• Sent from website (server) and stored by browser (client)

• Upon each subsequent request, the cookie is sent back to the server

• This way, the server “recognizes” the client from previous requests

• Circumvent the statelessness of the HTTP protocol
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Cookies in Laravel
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• A cookie has a name, value and experiation time

• We put our cookie in the queue. It will be handled by Laravel and sent back to client 
via response.
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Cookies in Laravel
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• Retrieving the cookie:
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Cookies: inspecting request – response using Postman
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Cookies: what about security?
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• Information is stored locally

• Transmitted with each request

• What about confidential data?

• Some solutions:

• Encryption of cookie value
(=default behavior in Laravel)

• HTTPS

Visualisation in browser:



22

Cookies: overcoming statelessness
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Cookies versus local storage
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Cookies:

• Key-value pairs (strings)

• Used to obtain state in stateless HTTP world

• Transmitted with each Request – Response 

Local storage:

• Key-value pairs (strings)

• Used for local data only

• If you want data in local storage available on server, you need to send it explicitly
( cookies)



Sessions
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Overcoming HTTP statelessness
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• We now know how to store information in HTTP cookies

• Information is stored on client

• Transmitted to server with each request

• What if we want to store more data?

• Data not to be manipulated at the client side?

• Examples:

• Contents of shopping cart

• Restaurant bookings

• Solution: sessions
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Sessions
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Sessions
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• Each session gets a unique (session) ID

• ID stored, usually in a cookie

• On server side, lots of info can be stored, associated with cookie (e.g. shopping cart)
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Sessions in Laravel
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• Store something in the session:

• You obtain a reference to the session via $request -> session() method

• Each item has a key (here “my-item”) and value (here contents of $item)
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Retrieving something from the session
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• Retrieving something from the session

• You obtain a reference to the session via $request -> session() method

• Retrieve item based on its key
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Sessions in Laravel
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• Keeping list of items (array) in the session



31

More information?
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• https://laravel.com/docs/master/session

https://laravel.com/docs/master/session
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Questions?
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