
Laravel: Eloquent (DB) continued,

Validation, Cookies and Sessions

Web, Mobile and Security
Frédéric Vlummens

• Eloquent: recap

• Selecting all records

• Adding a record

• Eloquent use cases

• Selecting a specific record

• Updating a specific record

• Deleting a specific record

• Validation

• Cookies

• Sessions

2

Agenda

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

Eloquent: recap

• Eloquent = ORM (Object-Relational Mapper)

• Database tables have corresponding models, used to interact with tables

• We do not write SQL code ourselves, but let Eloquent generate it for us

• Convention over configuration:

• Table names are plural, corresponding Models singular

• Each table has a PK field called id of type INTEGER AUTO_INCREMENT

• One-to-many relationships are handled in the database by taking singular of table
and suffixing foreign key field with _id

• These are conventions: we do not need to explain Laravel the pluralization rules
or primary keys

• As long as we follow the rules, Eloquent knows what to do

4

Eloquent: recap

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

5

Eloquent: recap

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

Database table names are pluralized
Primary keys are auto increment integers called id
For 1 to many relationships, the foreign key name consists of the related table name in singular, suffixed by _id

6

Eloquent: recap

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Selecting all records
using all():

• Adding a specific record
using save():

Eloquent: additional use cases

8

Eloquent use cases

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Using the find() method, select a record based on its primary key

• Using the save() method, you can also update existing records:

• Using the delete() method, you can delete an existing record:

Validation

10

Validation

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Validate form input on server-side

• Do not depend on client-side validation only!

• Define rules per parameter

• Rules are combined using the | symbol

• When validation fails, user gets returned to originating view

• $errors variable can be used to display validation errors

11

Validation

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

Individual rules per parameter
See https://laravel.com/docs/master/validation

Keys must match name attributes of your form fields

https://laravel.com/docs/master/validation

12

Validation

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

validate() method returns
an associative array,
containing all validated
values

13

Validation

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• In Blade file:

Only if there are errors…

…loop over them and print
them out

Cookies

15

HTTP = stateless protocol

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• When submitting a form, all previous data is lost

• (Except if we store in database)

• Reason: HTTP is a stateless protocol

• Each request is independent from the subsequent one

16

HTTP = stateless protocol

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Somehow, we must make sure our webserver code “remembers” us

• Solutions have been developed:

• Cookies

• Sessions

17

Cookie

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Small text file

• Sent from website (server) and stored by browser (client)

• Upon each subsequent request, the cookie is sent back to the server

• This way, the server “recognizes” the client from previous requests

• Circumvent the statelessness of the HTTP protocol

18

Cookies in Laravel

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• A cookie has a name, value and experiation time

• We put our cookie in the queue. It will be handled by Laravel and sent back to client
via response.

19

Cookies in Laravel

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Retrieving the cookie:

20

Cookies: inspecting request – response using Postman

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

21

Cookies: what about security?

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Information is stored locally

• Transmitted with each request

• What about confidential data?

• Some solutions:

• Encryption of cookie value
(=default behavior in Laravel)

• HTTPS

Visualisation in browser:

22

Cookies: overcoming statelessness

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

23

Cookies versus local storage

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

Cookies:

• Key-value pairs (strings)

• Used to obtain state in stateless HTTP world

• Transmitted with each Request – Response

Local storage:

• Key-value pairs (strings)

• Used for local data only

• If you want data in local storage available on server, you need to send it explicitly
( cookies)

Sessions

25

Overcoming HTTP statelessness

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• We now know how to store information in HTTP cookies

• Information is stored on client

• Transmitted to server with each request

• What if we want to store more data?

• Data not to be manipulated at the client side?

• Examples:

• Contents of shopping cart

• Restaurant bookings

• Solution: sessions

26

Sessions

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

27

Sessions

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Each session gets a unique (session) ID

• ID stored, usually in a cookie

• On server side, lots of info can be stored, associated with cookie (e.g. shopping cart)

28

Sessions in Laravel

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Store something in the session:

• You obtain a reference to the session via $request -> session() method

• Each item has a key (here “my-item”) and value (here contents of $item)

29

Retrieving something from the session

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Retrieving something from the session

• You obtain a reference to the session via $request -> session() method

• Retrieve item based on its key

30

Sessions in Laravel

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• Keeping list of items (array) in the session

31

More information?

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

• https://laravel.com/docs/master/session

https://laravel.com/docs/master/session

32

Questions?

25/03/2020 Web, Mobile and Security – Laravel: Eloquent (DB) continued, Validation, Cookies and Sessions

