
1/6

Web, Mobile and Security

Lab: Howest Air

1. Creating the project

Create a new Laravel project called howest-air by executing the following command from
within your PuTTY:

  ./build-laravel-project howest-air 

Try surfing to http://debian-wms.local/howest-air and make sure you get the default Laravel
start page:

2. General overview of the application

We are creating the brand new e-commerce site for the Howest Air airline, allowing visitors to
book flight tickets.

When opening the website, the user is presented with a booking form:

http://debian-wms.local/howest-air


2/6

The form has the following fields:

From: a dropdown list of airports
To: a dropdown list of airports
Date: a date field
Flight class: a dropdown list containing the different classes
Last name: a text field
First name: a text field
Email address: an email field

All information regarding the airports and flight classes is retrieved dynamically from the
database (see later).

As you can see, the destinations (=different airports) are also rendered as an unordered list at
the right side of the page:

Last but not least, the OpenWeatherMap API is consulted to display the weather situation in
Bruges (condition + temperature + icon):



3/6

After submission, a thank you message is displayed. Also note that although the weather
situation remains visible, the list of airports is replaced by a link to a (non-existing) page
containing an overview of rental cars:

The booking itself is stored in the database

3. Creating the actual application

3.1. Importing the database

We provide the database for you. However, you will need to import it in your MySQL
database server.

To do so, launch SQLyog, connect to debian-wms.local using user user and password
user.

Next, retrieve the script howest-air.sql from Leho and execute its contents.

This will create the database, as well as the various airport definitions and flight classes.



4/6

Take a moment to study the structure and contents of the various tables (primary keys and
other columns, ...).

3.2. Configuring the database connection

In the .env file (found in the root of your Laravel project), add the correct credentials:

  DB_CONNECTION=mysql 
  DB_HOST=127.0.0.1 
  DB_PORT=3306 
  DB_DATABASE=howest-air 
  DB_USERNAME=user 
  DB_PASSWORD=user 

This will tell Eloquent that:

the database is of type mysql;
the database server is running on the same machine as the webserver;
the server is listening on port 3306;
the database name is howest-air;
the database user is user and password idem.

3.3. Building the model

Generate an Eloquent model called Airport by using the command

  php artisan make:model Airport 

We will also be needing a model for Flightclass.

Finally, each booking is to be stored in the database. Add a model Booking.

3.4. Building the master layout page

Create a blade "master page" called master.blade.php, which will function as template for the
various views.

Base yourself on the screenshots above. Which part(s) will be different per view? Isolate them
using @yield instructions.

Your CSS files (reset.css and screen.css) should be placed in the subdirectory
/public/css of your application.

To reference your CSS file(s), do not forget to use the Blade function asset.

3.5. Creating the Booking Form

The first view is activated when navigating to the route /.



5/6

It displays the form, filling in the available airports in From and To based on the
corresponding records in the database table airports.

The flight classes are also filled in, based on the corresponding records in the database table
flightclasses.

Important:

The airports and flight classes are rendered dynamically based on what the models
return. Should we add a new airport in the DB table airports, the page should
automatically also display said airport.

Therefore, you will not include static HTML in the view with airport names and flight
classes, everything comes from the DB.

3.6. Processing the booking

Upon successful validation of user input, two things occur:

1. a new booking is added to the database;
2. a thank you message is displayed, summarizing the booking.

3.6.1. Adding the booking to the database

Create a new instance of the model class Booking, passing in the submitted information.

Next, call the model's save() method, which should effectively execute the SQL INSERT.

Verify in the database table bookings that the record has effectively been added.

3.6.2. Showing the thank you page

Finally, make sure a thank you page is also displayed, summarizing the booking:

At the bottom of the screen, a link is provided to start the process over again.



6/6

3.7. Current weather in Bruges

Make sure that on all pages of the website, the current weather of Bruges is displayed.

Use a regular fetch to do so, not JSON-P.

Place your JavaScript file(s) in the public folder and as with the CSS, use the asset function
to reference them.


