
1/8

Web, Mobile and Security

Lab: Howest Store

1. Creating the project

Create a new Laravel project called howest-store.

Try surfing to http://debian-wms.local/howest-store and make sure you get the default
Laravel start page:

2. General overview of the application

We are creating the brand new e-commerce site for the Howest Store.

Upon launch of the application, the user gets an overview of all products offered by the
store:

http://debian-wms.local/howest-store


2/8

When clicking a product, its details are displayed and the user may opt to add it to the cart:

Once a product has been added to the cart, it is displayed at all times at the right hand side
of the page:



3/8

The Howest Store only delivers to EU countries. The list of countries is displayed at the
bottom of the page, but retrieved dynamically from an API:

3. Building the model

Build a database howest-store, with one table products, which will contain the individual
products of the store. Each product has the following properties:

id: INTEGER, primary key, auto_increment
name: VARCHAR(255), friendly name
description: VARCHAR(1024), detail of the product
price: DOUBLE, unit price of the product

Create a model Product for this table.

4. Building the master layout page

Create a blade "master page" called master.blade.php, which will function as template for
the various views.

Base yourself on the screenshots above as well as the wireframes below to build this page.
Which part(s) will be different per view? Isolate them using a @yield instruction.



4/8

Your CSS files (reset.css and screen.css) should be placed in the subdirectory
/public/css of your application.

To reference your CSS file(s), use the Blade function asset, for example:

5. Creating the view "Product Catalog" (and associated routing and controller code)

This view is activated when navigating to the route /products.

It displays all products in the catalog as a bulleted list.

Each product is a hyperlink to a details page, existing under the route /products/x with x
replaced by the selected product's ID.



5/8

To build the hyperlink to the second route, use the route function.

Hint: Take a look at https://laravel.com/docs/master/routing#named-routes for more
information on how you can pass arguments to the route function.

The cart is -as always- displayed at the right hand side of the page. Do not focus yet on the
contents of the cart. We will tackle this later.

The footer is -as always- displayed on the bottom of the page. Do not focus yet on the list of
countries. We will tackle this later.

Important:

The products are rendered dynamically based on what the model (database) returns.
Should we add a fourth product into the table products, the page should
automatically also display said product.

Therefore, you will not include static HTML in the view with three list items and
product names, everything comes from the model.

6. Creating the view "Product Details" (and associated routing and controller code)

This view is activated when navigating to the route /products/x, with x the unique ID of the
product.

It displays the product's title, description, image as well as the unit price.

https://laravel.com/docs/master/routing#named-routes


6/8

The product images (whose names correspond to the product IDs), can be stored in the
directory /public/images of your application.

To reference them, use the same asset function as for the CSS file.

The button Add to cart issues a request to the server to effectively add the selected
product to the cart. Choose the appropriate HTTP action method (verb) for your form.

Hint: remember you can use input type="hidden" to pass hidden data to the server side.

Refer to the next section (§7) to develop the actual cart mechanism.

7. Developing the cart mechanism

Once you are able to consult the catalog and view a product's details, it is time to develop
the actual cart mechanism.

When the user clicks the Add to cart button, your controller should:

1. determine the product to add to the cart;

2. add it to the cart in such a fashion that it remains there until further notice.

Choose the appropriate mechanism to obtain this behaviour.

If the cart exists and contains one or more products, the products are to be displayed at the
right hand side of the page:



7/8

The products remain there, regardless of whether you navigate to the main product catalog
or to a product's details page.

Each time the Add to cart button is clicked, an additional product is added to the cart,
without losing the previous one:

8. Retrieving the list of countries

Once the shopping mechanism works, it is time to add the list of countries to the footer.

The EU countries can be retrieved using the API hosted at https://restcountries.eu/.

Take a look at the documentation and find the endpoint/URL which delivers you only the EU
countries.

Using Fetch, load these countries from the API and display them in the footer of your views.

https://restcountries.eu/


8/8

Your JavaScript file can be placed in the directory /public/js. You may remove any existing
JavaScript files Laravel pre-created in this directory, as we will only be using our own
JavaScript.

To reference your JavaScript file, once again use the asset function.

9. Order functionality (extra challenge!)

Up til now, the user is not able to actually place an order.

Extend the application to support this functionality, which should at least offer the following:

At the end of the process the user enters his/her email address.

The email address is validated at server side upon form submission.

An error message is displayed in case the email address is missing/not valid.

When the validation succeeds, the email address is stored in a table clients (create a
corresponding model for it)

The orders themselves (i.e. individual products) are stored in a table orders (create a
corresponding model for it).

Make sure there is a foreign key in the table orders that links back to the
corresponding client.

In the end, your database diagram should look something like this:


