
1/6

Web, Mobile and Security

Lab: Laravel - Intro

0. Preparing the work environment

Launch your virtual machine, ensuring that all parameters are setup correctly (cfr. to the first
lab).

Try navigating to http://debian-wms.local, which should display the default start page.

Try opening the share \\debian-wms.local\code from your Windows Explorer, which
should give you access to the various web projects you already developed. P

Make sure to execute the procedure Enabling URL rewriting before you continue.
Otherwise Laravel will not work!

1. Exercise 1: Laravel Routing

Create a new Laravel application called laravel-routing by executing the following
command from within your PuTTY.

 ./build-laravel-project laravel-routing

Some attention points:

Make sure to connect as user user when executing the command above.

Do not execute the command above more than once with the same parameter
(laravel-routing), as this may give unwanted errors.

Try surfing to http://debian-wms.local/laravel-routing and make sure you get the
default Laravel start page:

Routing exercises:

http://debian-wms.local/

2/6

1. Define a default route so that navigating to http://debian-wms.local/laravel-
routing/ displays the message Hello from Laravel in the visitor's web browser instead
of the default Laravel start page mentioned above.

2. Define a route so that navigating to http://debian-wms.local/laravel-
routing/welcome displays a welcome message Welcome at Howest University of
Applied Sciences in the visitor's web browser.

3. Define a route so that navigating to http://debian-wms.local/laravel-
routing/hello/[name] displays a welcome message. For example, navigating to
http://debian-wms.local/laravel-routing/hello/Frederic will display Hello
Frederic! in the visitor's web browser.

4. Define a route so that navigating to http://debian-wms.local/laravel-
routing/calc/[operator]/[operand1]/[operand2]/ will perform a calculation
and displays the result in the visitor's web browser.

The following are valid values for [operator]:

add → addition
mul → multiplication
sub → subtraction
div → division

For example, to multiply 5 and 3, the user should be able to issue the following
request:

http://debian-wms.local/laravel-routing/calc/mul/5/3

3/6

Hint: the switch statement may be of assistance to decide between the four
operations. Take a look at http://php.net/manual/en/control-structures.switch.php for
more information.

2. Exercise 2: Restaurant Booker

Create a new Laravel application called restaurant-booker by executing the following
command from within your PuTTY.

 ./build-laravel-project restaurant-booker

Try surfing to http://debian-wms.local/restaurant-booker/ and make sure you get
the default Laravel start page:

Create a view booking.blade.php to display a web form for a restaurant booking site. The
form should at least contain the following input fields:

Lastname: textfield, required
Firstname: textfield, required
Number of persons: dropdownlist, containing the values 1 to 8, required
Date: datefield, required
Time: dropdownlist, required, containing the following possibilities:

18:00
18:30
19:00
19:30

Remarks: textarea, optional

http://php.net/manual/en/control-structures.switch.php

4/6

Hints:

To easily generate the dropdownlist containing the numbers 1 → 8, you can use the
Blade @for construct. Take a look at https://laravel.com/docs/master/blade#loops for
more information.

Do you get an error? Try to understand the error message displayed in the browser.
Correct the error and try again.

Your CSS files should be placed in the directory /public/css of the application.

To reference the CSS files stored in that directory from your view(s), use the asset
function as follows:

Create a controller called BookingController by issuing the following command from
within the directory of your app in PuTTY:

 php artisan make:controller BookingController

This will generate a file called BookingController.php in the folder
/app/Http/Controllers.

Add a function to the controller to display the view you created a few steps earlier.

In the correct file, add a route so that issuing a GET request to http://debian-
wms.local/restaurant-booker/ triggers the controller function that displays the view.

Try out your code by navigating to http://debian-wms.local/restaurant-booker/. You
should get something comparable to the screenshot below:

https://laravel.com/docs/master/blade#loops

5/6

Next, we will write the code to process the booking. In our app, this will just mean displaying
a summary of the booking at the top of the page.

In your controller file, add a new function which retrieves the submitted information from the
Request object and passes it to the correct view, which is the same one as before, i.e.
booking.blade.php.

Make sure a correct route is assigned (will you be using GET or POST?) to the controller
function so that the form submission triggers the execution of the function.

Upon submission of the form, the view should display a nice summary of the information
received:

6/6

Before submission:

After submission:

