
1/19

Web, Mobile and Security

Extra exercise: Ticket Booker

About this exercise

In this exercise, we will be building a web application that allows users to book tickets for concerts.

Required outcome

When the user launches the website, a list of concerts is displayed.

When clicking a concert, its details are displayed, and a link is displayed to book the concert.

When clicking the link, the user is taken to a new page where (s)he can fill in personal details such as
lastname, firstname, e-mail address and number of tickets desired.

Upon completion of that form, the user receives a confirmation message in the browser.

An admin page also exists, where an overview of all requested tickets can be displayed.

Steps

1. Create a new app using the following command in the VM (PuTTY):

 ./build-laravel-app ticket-booker 

2. Try out the new app by surfing to http://debian-wms.local/ticket-booker:

3. Next, we will determine how many views we will need:

http://debian-wms.local/ticket-booker:


2/19

1. List of all concerts
2. Concert details
3. Registration form
4. Confirmation message
5. Admin page containing all registrations

4. Each view will be accessed using a route, so we need to determine those as well. Per case, we ask
ourselves which HTTP verb to use: GET/POST/...

1. List of all concerts → GET (we request a resource)
2. Concert details → GET (we request a resource)
3. Registration form → GET (we request a resource)
4. Processing the registration and showing the confirmation message → POST (we submit/create

a resource)
5. Admin page → GET (we request a resource)

5. We will be using a master page, containing the basic layout of the site, referencing CSS if any, ... Only
what is to differ per view/situation, will be defined in each individual child view.

6. Save a file called master.blade.php in your folder /resources/views. It will contain the following
code:

7. As you can see in the screen above, @yield defines a 'block' that will be filled in per individual child
view.

8. Next, we define our first child view, the one displaying the list of available concerts.

9. Create a file called index.blade.php in a subfolder /resources/views/tickets. It will contain the
following code:



3/19

10. As we see, it inherits (extends) from the master view. Within the @section-@endsection block, we
define what is to be displayed instead of the @yield instruction.

11. Time to test our first view. Of course, we will need an associated route. But in a Model-View-
Controller application, handling the views is done by the controller;

12. So let's generate our TicketController by issuing the following commands within PuTTY:

 user@debian-wms:~$ cd code/ticket-booker 
 user@debian-wms:~/code/ticket-booker$ php artisan make:controller 
TicketController 

13. This will generate a file called TicketController.php in the folder /app/Http/Controllers/:



4/19

14. Our first controller method will be responsible for displaying the view with concerts. Since the view
index.blade.php is in a subfolder tickets, we use the notation tickets.index to reference the
view:

15. Next, we need to associate a route with this controller method. To do so, go to the file
/routes/web.php and add the following:

16. Now when we navigate to http://debian-wms.local/ticket-booker/tickets we get the child view,
inheriting from the master page:

http://debian-wms.local/ticket-booker/tickets


5/19

17. Time to add the concerts themselves. In a Model-View-Controller application, data is retrieved from
the model.

18. So, we create a model class called Concert in the folder /app. This class has a constructor and also a
few fields:

id
title
date

19. Normally, the data (=list of concerts) would come from the database. Since we haven't seen database
access yet, we'll 'hardcode' the concerts in the model.

20. We will build a static method (part of the class itself, instead of an instance of the class) that returns
all the concerts:



6/19

We initialize an empty array, push three elements in it and return it as result of the method all.

21. We might also need the details of a concert based on its unique id. So, we write a corresponding
method find:

22. Back to our controller, where we will pass the list of concerts to the view. So we update our method
accordingly:



7/19

23. Since we now (using an associative array) pass the concerts in using the key "concerts", we should
be able to access this variable from within our view:

24. And when we try this out, we get the desired result:



8/19

25. Next, we want to make our concerts clickable. And when clicking a concert, we want to display the
concert's details.

26. As we discussed earlier, this involves a GET route. With the hyperlink, we will pass the concert id in the
URL, for example:

http://debian-wms.local/ticket-booker/tickets/101 for concert 101 (Rock in Bruges)
http://debian-wms.local/ticket-booker/tickets/103 for concert 103 (Classica)
...

27. So, in our routes, we define a new route, with a required parameter:

28. Of course, our controller now needs a method details with a parameter in which {id} will be
passed:

http://debian-wms.local/ticket-booker/tickets/101
http://debian-wms.local/ticket-booker/tickets/103


9/19

29. We will need a view that can display the concert details, and we'll pass the concert object to it.

30. So first, we need to retrieve the concert object based on its id. Luckilly, we can rely on our method
find we wrote earlier:

31. And now we can write the view itself, where we write out the concert's details using curly braces:



10/19

32. One piece is missing: we need to make sure our list of concerts in index.blade.php is clickable and
leads to the correct route with the parameter {id}.

33. To generate the correct route/link, we can rely on the route function. For this function to work, we
need to give our route a name in web.php:

34. Because our route has a unique name, we can now pass it to the route function. The second
argument of the function call will contain the id of the concert:



11/19

35. The route function will append the id to the URL, which we can clearly see if we go into the source of
the generated HTML:

36. All pieces now come together, and when we click a concert, we get the details view:



12/19

37. Next, we want a link to a booking page. So, we need a new named route:

38. This route name can now be used in combination with the route function in our view, to build the
actual link:



13/19

39. In our controller, we now of course need to write the corresponding method:

40. And we develop the corresponding view, which will display the booking form. Of course we need a
route to process the POST submission of the booking, so we define that in web.php:



14/19

41. And then we develop the actual view. Note the usage of a hidden input type to submit the concert ID
via POST:

42. In the corresponding controller method doBooking, we can now retrieve the concert ID, email
address and number of tickets from the Request object:



15/19

43. Before we can put our booking in the session (so it is remembered), we will group it in a Booking
object. So, we develop a model class Booking with the appropriate properties:

44. We can now instantiate a Booking object and store it with the other bookings in our session:



16/19

45. And finally, we make sure we are shown a thank you message, by returning a dedicated view:



17/19

Note that the hyperlink back to the index page also takes advantages of the named routing
mechanism.

46. We are nearly there. Now, we need to write the "admin" page, which displays the bookings in the
session. So, first we define a new route, linking to a method in the controller:



18/19

47. And we implement the controller method, in which we will retrieve all bookings from the session and
pass them to a view:

48. In the view, we loop over the bookings using a @foreach construct:



19/19

49. And we are finished. When we now navigate to http://debian-wms.local/ticket-
booker/listBookings, we get an overview of all bookings:


